The use of nanoparticulate delivery systems in metronomic chemotherapy.
نویسندگان
چکیده
Metronomic chemotherapy aiming at inhibiting tumor angiogenesis with conventional chemotherapeutics is a promising strategy for antiangiogenic cancer therapy. However, current metronomic chemotherapy mainly focuses on free small-molecule drugs, without any effort to achieve tumor-specific biodistribution, which may lead to long-term toxicity concerns. Metronomic chemotherapy using nanoparticulate drug delivery system (DDS) offers significant upside to reduce off-target side effects, decrease accumulated dose, and enhance the efficacy of tumor vessel targeting without compromising antitumor efficacy; but there has been a lack of thorough experimental data describing the targeted metronomic chemotherapy. Here, we develop a new nanoparticulate DDS, SP5.2 peptide conjugated, Flt-1 (VEGFR-1) targeted nanoparticles for docetaxel (SP5.2-DTX-NP), as a model for the investigation of targeted metronomic chemotherapy with respect to both antitumor efficacy and toxicity. The results demonstrate that metronomic SP5.2-DTX-NP exerts antitumor activity mainly through the antiangiogenic effect of docetaxel, which is specifically delivered into the tumor vascular endothelial cells through the nanoparticle internalization mediated by the interaction of SP5.2 and over-expressed Flt-1 receptors on tumor vessels. Moreover, the antitumor efficacy of targeted metronomic chemotherapy is better than that of the treatment with the DDS given in the maximum tolerated dose (MTD) regimen, which is shown in significantly prolonged mice survival and minimal drug-associated toxicity (bone marrow suppression, hematological toxicity, and mucosal injury of small intestine). The present research reveals and highlights the significance of targeted metronomic therapy with nanoparticulate DDS in antiangiogenic cancer therapy.
منابع مشابه
Application of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملTumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel.
Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor n...
متن کاملMetronomic Capecitabine for Elderly Advanced Gastric Carcinoma Patients Pretreated With One or Two Systemic Chemotherapy Lines
Background: The aim of this study was to investigate the efficacy and safety of metronomic capecitabine chemotherapy in pretreated elderly patients with advanced gastric carsonoma. Patients and Methods: Eligible patients were treated with capecitabine at a fixed dose of 1000mg daily until disease progression or toxicity. Endpoints were overall response rate, safety, progression-free survival...
متن کاملMetronomic Maintenance Therapy in Refractory Acute Myeloblastic Leukemia with Monosomy 7
Patients with acute myeloblastic leukemia (AML) with monosomy 7 are a group of patients with refractory AML who have a very poor prognosis. Therefore, rationally designed new therapies, including metronomic chemotherapy regimen with histidine deacetylase inhibitors (Valporic acid, ATRA) are being investigated as potential treatments for the population of refractory cases of AML. Herein, we repo...
متن کاملRe-design of Downstream Processing Techniques for Nanoparticulate Bioproducts
There has been much interest generated in the recovery of nanoparticulate (nanoparticle) bioproducts(Second generation of biotechnological products) such as plasmid DNA and viruses as putative gene therapyvectors, macromolecular assemblies as drug delivery vehicles and virus-like particles as vaccine components.Such product must be manufactured in advanced stages of purity, ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 34 16 شماره
صفحات -
تاریخ انتشار 2013